Copper Clad Steel – FLCCSRY

Innovative conductor material for low current and signal cables

Material

Copper Clad Steel consists of a core of homogeneous steel surrounded by a continuous cladding of copper

Applicable material standardASTM B 227, ASTM B 228, ASTM B 452

Usage in automotive industry

Coaxial cables, low current and signal cables

Usage in industry

Telecommunication, utility grounding, military and electronics

Benefits of Copper Clad Steel

	ccs	Cu-ETP
density (at 20 °C)	8.24 g/cm ³	8.92 g/cm ³
electrical conductivity	40 %, IACS	100 %, IACS
tensile strength*	>770 N/mm ²	> 220 N/mm ²
elongation at break*	> 1 %	> 16 %

* Values based on soft annealed ETP-copper and hard-drawn

Compared to copper conductors

- ✓ higher mechanical strength due to steel core
- ✓ reduction of cross-section of up to three gauge sizes due to higher tensile strength of CCS i.e. 0.35 mm² → 0.13 mm²
- ✓ smaller package size
- ✓ similar crimping characteristics

Compared to steel conductors

- better corrosion resistance than steel due to copper surface
- lower resistance due to high conductivity of copper covering

Comparison table – cable types*

	FLCCSRY	FLRY	Ratio
cross-section	0.13 mm ²	0.35 mm ²	63 % reduction
tensile force	>130 N	>75 N	73 % increase
max. electrical resistance at 20°C	317 Ω/km**	54.4 Ω/km**	482 % increase **
outer diameter	1.05 mm	1.30 mm	20 % reduction
approx. cable weight	2.0 kg/km	4.5 kg/km	55 % reduction

- * Due to the mechanical benefits over copper 0.35 mm² the adequate CCS cross-section is 0.13 mm².
- ** Due to resistance increase CCS can only be used in low current or signal applications.

LEONI