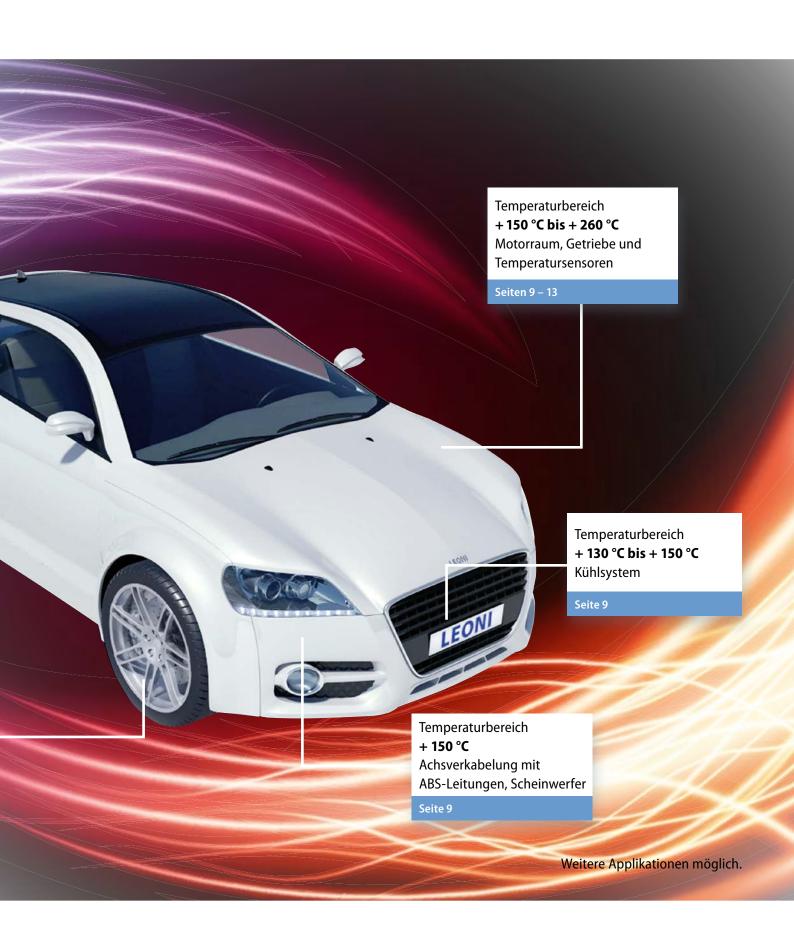

The Quality Connection

LEONI Fahrzeugleitungen Typische Temperaturbereiche und Anwendungen

im Überblick

Inhalt	Seite
Typische Temperaturbereiche und Anwendungen im Überblick	2 – 3
Eigenschaften der Isolierwerkstoffe	4 – 5
Leitermaterialien	6 – 8
LEONI Adascar® Leitungen	9 – 12
LEONI Mocar® Leitungen	13
Fertigungstechnologien	14
Qualitäts- und Umweltmanagement	14
LEONI weltweit	15


Ausgabe: November 2014

Technische Änderungen behalten wir uns vor.

© by LEONI Kabel GmbH 2013

Hinweis: LEONI gewährleistet, dass die in diesem Katalog enthaltenen Liefergegenstände bei Gefahrübergang die vereinbarte Beschaffenheit aufweisen. Diese bemisst sich ausschließlich nach den zwischen LEONI und dem Besteller schriftlich getroffenen konkreten Vereinbarungen über die Eigenschaften, Merkmale und Leistungscharakteristika des jeweiligen Liefergegenstandes. Abbildungen und Angaben in Katalogen, Preislisten und sonstigem dem Besteller von LEONI überlassenen Informationsmaterial sowie produktbeschreibende Angaben sind nur dann rechtlich bindend, wenn sie ausdrücklich als verbindliche Angaben bezeichnet sind. Solche Angaben sind keinesfalls als Garantien für eine besondere Beschaffenheit $des\ Liefergegenstandes\ zu\ verstehen.\ Der artige\ Beschaffenheitsgarantien$ müssen ausdrücklich schriftlich vereinbart werden. LEONI behält sich Änderungen des Kataloginhalts jederzeit vor.

Eigenschaften der Isolierwerkstoffe

LEOMER®

Die Mischung macht's

Unter dem Markennamen LEOMER führt LEONI seine Isolierwerkstoffe für die Kabelfertigung. Mit mehr als 50 eigenentwickelten Rezepturen stellt LEONI sicher, dass die Anforderungen, die sich aus den speziellen Applikationen unserer Kunden ergeben, optimal erfüllt werden. Die Herstellung unserer Isolierwerkstoffe im eigenen Haus und die enge Zusammenarbeit von Produktion und

Materialentwicklung garantieren einen gleichbleibend hohen Qualitätsstandard.

Der Name LEOMER setzt sich aus den Begriffen LEONI und Polymer zusammen und steht für die Vielfältigkeit der bei LEONI eingesetzten Werkstoffe.

Kurz- zeichen	Benennung	Kenn- zeichen	Dichte	Halogen- anteil	Härte Shore A/D	Zug- festigkeit	Reiß- dehnung
		DIN					ISO 527
	z.B. DIN ISO 1629 und 7728	76722	ISO 11183		ISO 868	ISO 527	DIN 53504
Fluorpoly	nere						
			g/cm³	ca. %		МРа	%
ETFE	Ethylen-Tetrafluorethylen	7Y	1,70	60	75D	> 30	> 200
FEP	Tetrafluorethylen-Hexafluorpropylen	6Y	2,14	75	55D	> 15	> 200
PTFE	Polytetrafluorethylen	5Y	2,12-2,17	75	55D-65D	> 20	> 200
PFA	Perfluoralkoxy-Copolymer	51Y	2,15	75	55D	> 20	> 200
Thermopl	astische Elastomere						
			g/cm³	ca. %		MPa	%
TPE-U	Thermoplastisches Polyether-Polyurethan	11Y	1,12	0	75A-54D	> 30	> 400
TPE-S	Thermoplastisches Styrol-Block-Copolymer	31Y	1,10-1,30	0-10	50D-65D	> 15	> 200
TPE-E	Thermoplastisches Polyether-ester Elastomer	12Y	1,16-1,25	0	40D-82D	> 25	> 400
TPE-A	Thermoplastisches Polyamid-Elastomer	41Y	1,01–1,06	0	63D	> 25	> 400
TPE-E	Thermoplastisches Polyester-Elastomer	13Y	1,25-1,28	0	55D-62D	> 30	> 300
Vernetzte	Polymere / Silikone						
			g/cm³			MPa	%
XLPE	Polyethylen (Strahlen-, Silan-, Peroxidvernetzung)	2X	1,20–1,50	10	30-60D	> 10	> 200
EVA	Ethylen-Vinylacetat	4G	1,30-1,40	0	80A-87A	> 7	> 150
SIR	Silikon-Gummi	2G	1,20-1,30	0	40A-90A	6–20	> 200

Gebrau	chstemperati	uren				Medienbeständigkeit				
Temperatur Index	Thermische Überlast- barkeit	Kälte- wickel- eigen- schaften	spez. Durch- gangswiderstand	Abrieb	Flamm- widrigkeit	ÖI	Kraftstoff	Brems- flüssig- keit	Säuren/ Laugen	org. Medien
			IEC 93							
ISO 672	2-1 oder ISO 1	4572	DIN 53482			ISO	6722-1 oder l	50 14572		
°C/3.000 h	°C/48 h	°C	Ω·cm							
180	230	-65	> 1015	++	++	++	++	++	++	++
210	260	-65	> 1015	++	++	++	++	++	++	++
260	305	-90	> 1018	++	++	++	++	++	++	++
260	290	-90	> 1015	++	++	++	++	++	++	++
110–150	150	-40	> 109	++	+	++	++	+	+	+
125	150	-40	> 1010	-	+	+	+	-	+	_
125-150	150	-40	> 109	++	_	++	++	+	_	+
125-150	120	-40	> 1010	++	-	++	++	+	-	+
125-150	180	-40	> 109	++	+	++	++	+	+	+
125–150	150	-40	> 1014	+	+	+	+	-	+	+
140	180	-40	> 1010	_	_	_	_	-	_	_
200	225	-80	> 1016	-	+	+	+	++	+	+
					++	ausgezeich	nnet + gut	– bedin	gt gut	ungenügend

Leitermaterialien

Als Leitermaterial kommt bei unseren Leitungen überwiegend Kupfer (Cu) zum Einsatz. Für die Produktion von Drähten wird hauptsächlich Cu-ETP1 (sauerstoffhaltiges Kupfer) und Cu-OF 1 (sauerstofffreies Kupfer für besondere Anforderungen, z. B. Wasserstoffbeständigkeit) eingesetzt.

Neben reinem Kupfer verarbeiten wir auch verschiedene Kupferlegierungen und Aluminium für spezielle Anwendungen.

Auszug aus der EN 1977 – Kupfer

Kurz- zeichen	Werkstoff- nummer	Zusammen- setzung	Dichte	Schmelz- punkt	% IACS min.	Hinweise auf Eigenschaften und Verwendung
		in Gewicht-%	g/cm³		ISO 868	ISO 527
Sauerstoff	haltiges Kupfe	er				
Cu-ETP1 (E-Cu)	CW 003 A	Cu ≥ 99,90 Sauerstoff max. 0,040	8,9	1.083 °C	80A-60D	Sauerstoffhaltiges (zähgepoltes) Kupfer mit einer elektrischen Leitfähigkeit im weichen Zustand von \geq 58,58 m/ Ω mm² bei 20 °C.
Sauerstoff	freies Kupfer,	nicht desoxidier	t			
Cu-OF1 (OF-Cu)	CW 007 A	Cu 99,95	8,9	1.083 °C	101	Kupfer hoher Reinheit, weitgehend frei von im Vakuum verdampfenden Elementen, mit einer elektrischen Leitfähigkeit im weichen Zustand von ≥ 58,58 m/Ωmm² bei 20 °C. Halbzeug mit hohen Anforderungen an Wasserstoffbeständigkeit, Schweiß- und Hartlötbarkeit. Für Vakuumtechnik und Elektronik.

International Annealed Copper Standard = IACS Elektrische Leitfähigkeit von Kupfer = $min. 58 m/\Omega mm^2 = 100 \% IACS$

Auszug aus der DIN CEN/TS 13388 und EN 1977 – Legierungen

min. 0,08 max. 0,12 min. 0,08 max. 0,12 min. 0,08 max. 0,12 min. 0,08 max. 0,12 min. 0,14 min. 0,14 max. 0,26 min. 0,25 min. 0,25 min. 0,08 min. 0,	Kurz- zeichen	Werkstoff- nummer	Zusammen- setzung	Dichte	Schmelz- punkt	% IACS min.	Hinweise auf Eigenschaften und Verwendung
min. 0,08 max. 0,12 CuMg 0,2 CW 127 C Mg* min. 0,14 min. 0,14 max. 0,26 CuSn 0,3** min. 0,25 min. 0,25 min. 0,08 max. 0,12 einer elektrischen Leitfähigkeit im weichen Zustand von ≥ 57 m/Ωmm² bei 20 °C. Kupferlegierung mit hoher Zugfestigkeit ur einer elektrischen Leitfähigkeit im weichen Zustand von ≥ 44 m/Ωmm² bei 20 °C. Kupferlegierung mit hoher Zugfestigkeit ur einer elektrischen Leitfähigkeit			in Gewicht-%	g/cm³			
min. 0,14 max. 0,26 cush 0,3** min. 0,14 max. 0,26 min. 0,14 max. 0,26 einer elektrischen Leitfähigkeit im weichen Zustand von ≥ 44 m/Ωmm² bei 20 °C. Kupferlegierung mit hoher Zugfestigkeit ur einer elektrischen Leitfähigkeit	CuAg 0,1	CW 013 A	min. 0,08	8,9	1.083 °C	98	im weichen Zustand von $\geq 57 \text{ m/}\Omega\text{mm}^2$
0,3** min. 0,25 einer elektrischen Leitfähigkeit	CuMg 0,2	CW 127 C	min. 0,14	8,9	1.078 °C	75	im weichen Zustand von \geq 44 m/ Ω mm ²
bei 20 °C.		CW 129 C		8,9	1.065 °C	72	im weichen Zustand von \geq 42 m/ Ω mm ²

Auszug aus der EN 573 – Aluminium

Kurz- zeichen	Werkstoff- nummer	Zusammen- setzung	Dichte	Schmelz- punkt	% IACS min.	Hinweise auf Eigenschaften und Verwendung
		in Gewicht-%	g/cm³			
EAI 99,7	1370	AI 99,7	2,7	659 °C	62	Aluminium mit einer elektrischen Leitfähigkeit im weichen Zustand von \geq 35,5 m/ Ω mm ² bei 20 °C.

Galvanische Beschichtungen: Für galvanisch veredelte Cu-Drähte wird als Metallwerkstoff je nach Anforderung Zinn, Silber oder Nickel verwendet.

Zinn								
Benennung	Zinn 99,90							
Dichte	7,29 g/cm ³							
Schmelzpunkt	232 °C							
Symbol	Sn							

Silber								
Benennung	Feinsilber 99,97							
Dichte	10,5 g/cm ³							
Schmelzpunkt	960 ℃							
Symbol	Ag							

Nickel								
Benennung	Nickel 99,90							
Dichte	8,9 g/cm ³							
Schmelzpunkt	1450 °C							
Symbol	Ni							

Einsatzkriterium

- Gute Lötbarkeit
- Effektiver Schutz gegen Korrosion

■ Ho	he Tem	peratur	beständ	igkeit
------	--------	---------	---------	--------

- Gute Oberflächenleitfähigkeit (Skin-Effekt)
- Hohe Korrosions- und Temperaturbeständigkeit

Temperaturgrenzen für den Einsatz von Leitermaterialien.

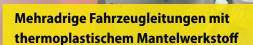
Nach den Vorschriften CSA-C22.2 No. 210.2 sind den Leitermaterialien folgende Temperaturgrenzen zugeordnet:

Temperaturbereich max. 150 °C*

- Kupfer blank und verzinnt mit Einzeldraht-Ø ≤ 0,38 mm
- Kupferplattierter Stahldraht (z.B. Staku) mit Einzeldraht-Ø ≤ 0,38 mm

Temperaturbereich max. 200 °C*

- Kupfer blank und verzinnt mit
 Einzeldraht-Ø ≥ 0,38 mm
- Kupferplattierter Stahldraht (z.B. Staku)
 mit Einzeldraht-Ø ≥ 0,38 mm
 blank und verzinnt
- Kupfer versilbert
- Kupfer-Legierung (alloy)


Temperaturbereich max. 250 °C*

- Kupfer vernickelt
- Legierungen aus Cadmium-Chrom-Kupfer versilbert
- Stahldrähte vernickelt
- Reinnickeldrähte für flexible Anwendungen und Nickellegierungen

In Anlehnung an Temperaturklassen nach ISO 6722-1

LEONI Adascar® Standardleitungen

Advanced Automotive Special Cables.

VORTEILE / EIGENSCHAFTEN

- hohe Flexibilität
- gute Umspritzbarkeit
- Kältebeständigkeit
- Hydrolysebeständigkeit
- gute Medienbeständigkeit
- Biegewechselfestigkeit
- unvernetzter Mantelwerkstoff
- Abriebfestigkeit

ANWENDUNGEN

- ABS-Anwendungen
- Sensorik
- Bordnetzverkabelung
- Kühlsystem

NORMEN

Nach ISO 6722-1, LV 212, ISO 14572

ISOLIERUNG

- Thermoplastisches Elastomer auf Basis Polyether-Ester (TPE-E)
- Polyethylen (Strahlen-, Silan-, Peroxidvernetzung) (XLPE)
- Ethylen/Vinylacetat (EVA), vernetzt

MANTEL

 Thermoplastisches Elastomer auf Basis Polyurethan (TPE-U)

BETRIEBSSPANNUNG

 $\leq 60 \, \text{V}$

Auszug aus unser	em bestehenden Produktprogran	nm					
Bezeichnung	Тур	Aderzahl	Nennquerschnitt mm²	Isolierung	Mantel	Schirm	Temperaturbereich
				TPE-E			
Rundleitung	LEONI Adascar® Control 87xx	2 – 6	0,35 - 0,50	XLPE		-	
				EVA			
				TPE-E			
Rundleitung geschirmt	LEONI Adascar® Control 97xx	2 – 6	0,35 – 0,50	XLPE	TPE-U	B od. C	- 40 °C bis + 150 °C
geschirint				EVA			
	LEONI Adascar® Power 47xx	2 – 4	0,75 – 1,50	TPE-E		-	
				XLPE			
Rundleitung				EVA			
			2,00	TPE-E			
			2,50	TPE-E			
Rundleitung geschirmt				TPE-E	_	B od. C	
			0,75 – 1,50	XLPE			
	LEONI Adascar® Power 57xx	2 – 4		EVA			
geschillill			2,00	TPE-E			
			2,50	TPE-E			

 $We itere\ Querschnitte,\ Designs\ und\ Litzen-sowie\ Leitungskonstruktionen\ auf\ Anfrage\ erh\"{a}ltlich.\ Die\ Aderanzahl\ kann\ auf\ Wunsch\ erweitert\ werden.$

LEONI Adascar® Leitungen mit Sonderwerkstoffen

Advanced Automotive Special Cables.

VORTEILE / EIGENSCHAFTEN

- gute thermische Beständigkeit in thermischer Überlast
- gute Umspritzbarkeit
- hohe Flexibilität
- dauerhafte Medienbeständigkeit bei Immersion (Lagerung) in Ölen
- vernetzt bzw. unvernetzter Mantelwerkstoff
- Lösungsmittelbeständigkeit (erhöhte Quellbeständigkeit)
- thermische Beständigkeit bis zu 1.000 Std. / 180 °C
- Flammwidrigkeit / keine Flammwidrigkeit

ANWENDUNGEN

- Bremssystemverkabelung
- Sensoren für Motormanagement
- Getriebeverkabelung

NORMEN

Nach ISO 6722-1, LV 212, ISO 14572

ISOLIERUNG

- Polyethylen (Strahlen-, Silan-, Peroxidvernetzung) (XLPE)
- Ethylen / Tetrafluorethylen (ETFE)

MANTEL

- Thermoplastisches Elastomer auf Basis Polyamid (TPE-A)
- Thermoplastisches Elastomer auf Basis Polyether-Ester (TPE-E)

BETRIEBSSPANNUNG

≤ 60 V

Auszug aus unser	em bestehenden Produktprogram	m					
Bezeichnung	Тур	Aderzahl	Nennquerschnitt mm²	Isolierung	Mantel	Schirm	Temperaturbereich
Rundleitung			0,35 – 0,50	XLPE	TPE-A		
hitzebeständig	LEONI Adascar® Control 87xx		0,33 – 0,30	ETFE	11 L-A	_	
Rundleitung ölbeständig	2201171005001		0,35 – 0,50	ETFE	TPE-E		-40°C bis + 150°C
Rundleitung			0,35 – 0,50	XLPE		B od. C	
hitzebeständig geschirmt	LEONI Adascar® Control 97xx			ETFE	TPE-A		
	LEONI Adascar® Power 47xx	2-4	0,75 – 1,50	XLPE	TPE-A		
Rundleitung hitzebeständig				ETFE			
mizebestandig			2,00	ETFE		_	
Rundleitung ölbeständig			0,75 – 1,50	ETFE	TPE-E		
			2,00	ETFE			
Rundleitung hitzebeständig	LEONI Adascar® Power 57xx		0,75 – 1,50	XLPE	TPE-A	B od. C	
geschirmt	LEGINI Addiscal Tower 57 AX		0,75 - 1,50	ETFE	IFC-A		
			2,50	2,112			

Weitere Querschnitte, Designs und Litzen-sowie Leitungskonstruktionen auf Anfrage erhältlich. Die Aderanzahl kann auf Wunsch erweitert werden.

LEONI Adascar® strahlenvernetzte Leitungen

Advanced Automotive Special Cables.

VORTEILE / EIGENSCHAFTEN

- gute thermische Beständigkeit in thermischer Überlast
- gute Chemikalienbeständigkeit
- Lösungsmittelbeständigkeit (erhöhte Quellbeständigkeit)
- Biegefestigkeit
- Abriebfestigkeit
- Flammwidrigkeit

ANWENDUNGEN

- Bremssystemverkabelung
- Sensoren für Motormanagement
- Getriebeverkabelung

NORMEN

Nach ISO 6722-1, LV 212, ISO 14572

ISOLIERUNG

- Polyethylen (Strahlen-, Silan-, Peroxidvernetzung) (XLPE)
- Ethylen / Tetrafluorethylen (ETFE)

MANTEL

Polyethylen (Strahlenvernetzung) (XLPE)

BETRIEBSSPANNUNG

≤ 60 V

Auszug aus unserem bestehenden Produktprogramm							
Bezeichnung	Тур	Aderzahl	Nennquerschnitt mm²	Isolierung	Mantel	Schirm	Temperaturbereich
Rundleitung strahlenvernetzt	LEONI Adascar® Control 87xx		0,35 – 0,50	XLPE ETFE	XLPE	-	- 40 °C bis + 150 °C
Rundleitung	LEONI Adascar® Control 97xx	2-4	0,35 – 0,50	XLPE		B od. C	
strahlenvernetzt geschirmt				ETFE			
Rundleitung		2	2,00	ETFE		_	
strahlenvernetzt			2,50				
Rundleitung	I FONI Adascar® Power 4/xx	2-4	0,75 – 1,50	XLPE			
strahlenvernetzt				ETFE			
Rundleitung strahlenvernetzt	LEONI Adascar® Power 57xx		0,75 – 1,50	XLPE		B od. C	
geschirmt				ETFE			

Weitere Querschnitte, Designs und Litzen- sowie Leitungskonstruktionen auf Anfrage erhältlich. Die Aderanzahl kann auf Wunsch erweitert werden.

LEONI Adascar® Leitungen mit Hochleistungspolymeren

Advanced Automotive Special Cables.

- gute mechanische und thermische Eigenschaften
- besonders geeignet für die Innenverdrahtung
- sehr gute Medienbeständigkeit
- Abriebfestigkeit
- Flammwidrigkeit

ANWENDUNGEN

- Abgassysteme
- Motorraum

NORMEN

Nach ISO 6722-1, LV 212, ISO 14572

- Polytetrafluorethylen (PTFE)
- Perfluoralkoxy-Copolymer (PFA)
- Ethylen / Tetrafluorethylen (ETFE)
- Tetrafluorethylen / Hexafluorpropylen (FEP)

MANTEL

- Polytetrafluorethylen (PTFE)
- Perfluoralkoxy-Copolymer (PFA)
- Ethylen / Tetrafluorethylen (ETFE)
- Tetrafluorethylen / Hexafluorpropylen (FEP)
- Silikon-Gummi (SIR)

BETRIEBSSPANNUNG

≤ 60 V

luszug aus unsere	em bestehenden Produktprogram	m				
Bezeichnung	Тур	Aderzahl	Nennquerschnitt mm²	Isolierung	Mantel	Temperaturbereich
Rundleitung	LEONI Adascar® Control 87xx	2-4	0,35 – 0,50	ETFE	ETFE	– 40 °C bis + 180 °C
				FEP	SIR	– 40 °C bis + 200 °C
					FEP	– 40 °C bis + 210 °C
				PFA	PFA	40 °C bi- + 200 °C
				PTFE	PTFE	– 40 °C bis + 260 °C
	LEONI Adascar® Power 47xx		0,75 – 1,50	ETFE	ETFE	– 40 °C bis + 180 °C
				FEP	SIR	– 40 °C bis + 200 °C
					FEP	– 40 °C bis + 210 °C
				PFA	PFA	40 °C his + 260 °C
				PTFE	PTFE	– 40 °C bis + 260 °C

Weitere Querschnitte, Designs und Litzen- sowie Leitungskonstruktionen auf Anfrage erhältlich. Die Aderanzahl kann auf Wunsch erweitert werden.

LEONI Mocar® hochtemperaturbeständige Leitungen

VORTEILE / EIGENSCHAFTEN

- Temperaturbeständigkeit bis + 260 °C
- sehr gute Medienbeständigkeit
- Abriebfestigkeit
- Flammwidrigkeit

ANWENDUNGEN

- Abgassysteme
- Motorraum
- Temperatursensoren
- Bremsverschleißanzeige
- Batterieleitungen

NORMEN

Nach ISO 6722-1, LV 112 -1 und Kundenspezifikationen

ISOLIERUNG

- Thermplastisches Polyester-Elastomer (TPE-E)
- Ethylen-Tetrafluorethylen (ETFE)
- Silikon-Gummi (SIR)
- Tetrafluorethylen-Hexafluorpropylen (FEP)
- Perfluoralkoxy-Copolymer (PFA)
- Polytetrafluorethylen (PTFE)

Auszug aus unserem bestehe	enden Produktprogramm				
Bezeichnung	Тур	Anzahl Einzeldrähte	Nenn- querschnitt mm²	Isolierung	Temperaturbereich
Fahrzeugleitung wärmebeständig	LEONI Mocar® 150 C	7 – 19	Typ A → 0,22 – 2,5	TPE-E	– 40 °C bis + 150 °C
	ELONI Mocai 150 C	12 – 84	Typ B → 0,35 – 6	11 6-6	
	LEONI Mocar® 180 E	7 – 19	Typ A → 0,35 – 2,5	ETFE	– 65 °C bis + 180 °C
	LEONI MOCAL TOO E	12 – 84	Typ B → 0,35 – 6	EIFE	
	LEONI Mocar® 200 G	12 – 457	0,35 – 95	SIR	- 80 °C bis + 200 °C
	LEONI Mocar® 200 G AL (Aluminium)	50 – 305	10 – 120	SIN	
Fahrzeugleitung hochtemperaturbeständig	LEONI Mocar® 210 F	7 – 19	Typ A → 0,35 – 2,5	FEP	– 65 °C bis + 210 °C
nochtemperaturbestandig	LEONI MOCAI - 210 F	12 – 84	Typ B → 0,35 – 6	FEP	
	LEONI Mocar® 260 T	7 – 56	0,35 – 4	PFA	−80 °C bis + 260 °C
	LEONI Macar® 260 D	7 – 19	Typ A → 0,22 – 2,5	PTFE	– 90 °C bis + 260 °C
	LEONI Mocar® 260 R	12 – 84	Typ B → 0,35 – 6	PIFE	

Fertigungsverfahren

bei Hochtemperaturleitungen

Silikon-Extrusion

FERTIGUNGSTECHNOLOGIEN

LEONI verfügt über modernste Maschinen zur Verarbeitung von Hochtemperaturwerkstoffen und bildet alle relevanten Technologien im eigenen Haus ab:

VERNETZUNG VON WERKSTOFFEN

Bei vernetzten Werkstoffen kommen einfache Basismaterialien zum Einsatz, die mit einem entsprechenden Vernetzungsbeschleuniger vermischt werden. Die Vernetzung im Material kann über drei Verfahren aktiviert werden: physikalisch, chemisch und durch Strahlung. Im Isolationsmaterial bilden sich zusätzliche Querverbindungen der Molekül-Ketten, die eine höhere Beständigkeit gegen Umwelteinflüsse erzeugen.

RAM-EXTRUSION

Die Verarbeitung von PTFE kann über Ram-Extrusion erfolgen. Ausgangsmaterial für dieses besondere Verfahren ist ein PTFE Pulver, das mit Gleitmittel versetzt wird und mittels einer Vorformpresse zu einem zylindrischen Vorformling mit Innenbohrung gepresst wird. Dieser Vorformling wird in den Ram-Extru-

sionszylinder eingesetzt und mit einem Kolben durch eine Extruderdüse gepresst. Das Material ummantelt den Leiter, der durch den Extruderkopf geführt wird. Nach dem Extrusionsprozess wird dem Kabel wieder das Gleitmittel über Wärmezufuhr entzogen und anschließend bei hoher Temperatur in einem Durchlauf-Ofen gesintert.

SILIKONVERARBEITUNG

Das Verarbeitungsprinzip für Silikon gleicht dem der PVC-Extrusion. Der gravierende Unterschied liegt jedoch im Temperaturprofil. Silikon wird grundsätzlich kalt verarbeitet, das heißt, das Mischwalzwerk und der Extruder werden über eine Vielzahl von verschiedenen Regelzonen ständig auf < 20 °C temperiert. Die beim Mischen und Extrudieren entstehende Wärme wird direkt abgeführt. Nach der Extrusion muss der Silikon-Kautschuk vernetzt werden. Die Moleküle werden mit Hilfe eines Vernetzers zu dreidimensionalen Netzwerken verknüpft. Dies geschieht innerhalb getrennt regelbaren Vernetzungsöfen durch die das Produkt direkt nach der Extrusion läuft. Hier können verschiedene Temperaturprofile eingestellt werden.

Das Einbringen einer hohen Temperatur ermöglicht bzw. beschleunigt den Vorgang der Vernetzung, in Abhängigkeit der beiden folgenden Verfahren:

- Bei der peroxidischen Vernetzung bedarf es einer höheren Temperatur und einer längeren Zeit bis der Vernetzungsvorgang abgeschlossen ist.
- Bei der platinkatalysierten Vernetzung findet der Vorgang schon unter Raumtemperatur statt. Um ein vorzeitiges Vernetzen des Silikon-Kautschuks zu verhindern, ist deshalb eine ausreichende Kühlung von Mischwalze und Extruder unbedingt erforderlich.

Qualitäts- und Umweltmanagement

LEONI - The Quality Connection

Die Draht- und Kabelstandorte von LEONI sind weltweit gemäß ISO 9001:2008 zertifiziert; alle Standorte, an denen Fahrzeugleitungen produziert werden, gemäß ISO/TS 16949:2009.

Unser Umweltmanagement ist nach DIN EN ISO 14001:2004 zertifiziert.

LEONI weltweit

Die Standorte der Business Group Automotive Cables

Die Nähe zu unseren Kunden ist zentraler Bestandteil unserer Firmenpolitik. LEONI ist seinen Kunden ein zuverlässiger Partner – und das überall auf der Welt. Zeichen von Nähe ist für uns auch, Qualität und Service auf weltweit gleich hohem Niveau zu halten und auszubauen.

Durch die internationale Positionierung, standardisierte Methoden und klar definierte Prozesse unterstützen wir effizientes Arbeiten sowie die Innovationskraft und die Marktposition unserer Kunden.

Ganz gleich, wo wir unser Know-how, unser Engagement und unsere Ideen ein- und umsetzen: wir wollen weltweit den überzeugten Kunden.

Alle Standorte im Überblick

Doutschland

LEONI Kabel GmbH, Roth LEONI HighTemp Solutions GmbH, Halver

China

LEONI Wire (Changzhou) Co. Ltd., Changzhou

lapan

LEONI Wire & Cable Solutions Japan K.K., Aichiken

Indien

LEONI Cable Solutions (India) Pvt. Ltd., Pune

Mexiko

LEONI Cable Mexico S.A. de C.V., Cuauhtémoc

Polen

LEONI Kabel Polska Sp.z.o.o., Kobierzyce

Slowakei

LEONI Slovakia, spol. s r.o., Trenčianska Teplá

Türkei

LEONI Kablo ve Teknolojileri San. ve Tic. Ltd. Sti., Gemlik

Ungarn

LEONI Kábelgyár Hungaria Kft., Hatvan

USA

LEONI Cable Inc., Rochester

Erfahren Sie mehr:

Business Group Automotive Cables

www.leoni-automotive-cables.com

LEONI Kabel GmbH

Stieberstraße 5 91154 Roth Deutschland

Telefon +49 (0)9171-804-2378
Telefax +49 (0)9171-804-2421
E-Mail cable-info@leoni.com